Henry Brodaty

Depression, Dementia, Pseudodepression.

Never Stand Still

Medicine

Centre for Healthy Brain Ageing

www.cheba.unsw.edu.au

Dementia Centre for Research Collaboration

www.dementiaresearch.org.au

University of New South Wales (UNSW Australia)

Depression, apathy & cognition

Depression & cognition

Cognition during episode of depression

- Deficits = core feature at all ages
 - Memory, executive function, processing speed
- More in older people, if depression more severe

Airaksinen E Psycholog Medicine 2010; 34, 83–91

Cognitive deficits persist after recovery from depression

- ?related to underlying neurobiological changes (atrophy, DWMH)
- More in elderly, late onset depression¹

¹ Kohler S et al Psychological Medicine 2010;40:591-602

Older person with cognitive impairment and depression

- Is cognitive impairment secondary to depression?
- Is depression secondary to underlying brain pathology such as dementia?

Depression: risk factor for dementia

- Is it prodrome?
 - 30 year build up of AD pathology
- Is it secondary to depression?
 - Depⁿ → cortisol[↑] → temporal lobe atrophy
- Is it secondary to treatment of depression?
 - Unlikely
- Mid-life depression associated with (?↑) risk
- Late-life depression associated with ↑↑ risk

25-year follow-up of depression

- 71 depressed in-pts (10 deceased) and 50 surgical controls assessed 25 years later
- No signif. differences between depressed pts and controls on any neuropsychological test
- 10 depressed patients but no controls had dementia at follow-up P<0.01)
- Dementia predicted by older age at baseline
- Vascular dementia was most common type

Brodaty H et al. Psychological Medicine 2003;33(7)1263-1275.

Dementia: risk factor for depression

- Dementia associated with depression
 - ≈ 20-50% people with dementia have depⁿ
- Not associated with recency of diagnosis
 - Suggesting unlikely to be reaction
- Associated with type of dementia
 - More in subcortical dementia (PDD, VaD)
 - Suggesting likely linked to brain pathology

Risk factors common to both

Vascular depression

- CVD predisposes, precipitates or perpetuates depressive syndrome
- MRI: > WMHs esp frontal-subcortical
- Cognitive ↓, psychomotor retardation/slowing, apathy, executive dysfunction
- Poorer response to treatment
- Worse prognosis: depression, dementia, death

Krishnan 1988, 1997; Coffey 1990; Alexopoulos 1997; Hickie 1997

Apo Eε4 & depression

- Late onset depression 43% vs EO 8% (Krishnan, 1996)
- HAAS ApoEε4 modulates effect of depression on dementia risk in men (Irie F, 2006)
 - Non-depressed w ApoEε4 ns
 - depressed w/out ApoEε4,1.6x risk (0.8-3.0)
 - depressed men w ApoE ϵ 4, 7.1x risk (3.0-16.7)
- Cache County no effect of ApoEε4 on LO depression, except those >80 (Steffens DC, 2003)

Depression & dementia

Clinical features overlap

Symptoms common to both

- Hamilton Depression Rating Scale-21 in dementia
 - total possible score of 64
 - Sleep disturbance, agitation, retardation, loss of interest, loss of weight/ appetite, loss of libido, loss of energy, lack of insight, paranoid delusions, hallucinations → < 34

Bedside Dx: depⁿ v dementia

Depression

- Onset recent, course > rapid
- Family always aware
- PPH, FH of dep >likely to be +ve
- > cognitive Sx, > specific
- Pt highlights failures
- Affect pervasive
- Behaviour incongruent with cognitive Sx eg social skills ↓
- O/E "don't know" answers, memory loss, past = recent; memory gaps often

Dementia

- Longer duration, >gradual
- Family often not aware
- FH of dementia may exist
- Pt. complains less
- Pt. highlights success
- Affect labile, shallow
- Behaviour compatible with cognitive Sx
- O/E recent memory<<past, memory gaps unusual

Wells CE, Am J Psychiatry, 1979 (n = 10, 33-69yo, 9 in-pts, 1 out-pt)

Bedside Dx: depⁿ v dementia

Depression* (n = 14)

Dementia (n = 28)

- DMV: worse in morning
- >EMW, > anxiety, > libido↓

- DMV: Worse in evening
- > disorientation to time
 - > difficulty finding their way
 - > impairment with dressing

Reynolds CF et al, Am J Psychiatry 1988; 145:1099-1103

*Pts in larger research on sleep and ageing, 35/42 in-pts.

Pseudodementia the debate

Pseudodementia case

First episode:

- 78yo man with 1st onset depression resistant to TCA Rx; MMSE 19/30
- Depression treated as inpatient with MAOI
- Recovery from depression; MMSE 30/30
- A case of pseudodementia

One year later, recurrence:

cognitive impairment, longer time to recover,
 ECT; cognition did not fully recover

Pseudo-dementia case ctd

Two years later

- Third episode only partially responsive to ECT, cognitive deficits more pronounced
- MRI reveals multiple DWMH
- Three years later
- Dementia, now needs help with ADLs

Pseudodementia

- Wernicke (1934) chronic hysterical state mimicking mental weakness¹
- Madden (JAMA, 1952): 10% of 300 cases

¹ Snowdon J, Australasian Psychiatry, 2011

- Kiloh put term "on the map"¹
 - Dementia very closely mimicked by psychiatric condition
 - Many patients misdiagnosed with depression which was untreated
 - Cures with ECT and antidepressants

¹ Kiloh L, 1961 Acta Psych Scandanavica

Pseudodementia

- Defⁿ: Dx confirmed if cognition recovers when psychiatric condition resolves
- Psychiatric conditions → Pseudodementia¹
 - Depression
 - Schizophrenia, paraphrenia
 - Mania and bipolar Δ
 - Hysteria
 - Malingering, Ganser syndrome

¹Kiloh LG, Acta Psych Scandanavica 1961

Pseudodementia

- Intellectual impairment in patients with primary psychiatric disorder in which the features of intellectual abnormality resemble ... those of a neuropathologically induced cognitive deficit.
- This neuropsychological impairment is reversible and there is no apparent primary neuropathological process

Caine ED. Arch Gen Psych 1981; 38:1359-1364

Publications with "pseudodementia" as keyword

PubMed (retrieved on 8 January 2018)

https://www.ncbi.nlm.nih.gov/pubmed/?term=pseudodementia

The myth of pseudodementia

- Single case, 85yo ○
- Lifelong history of unipolar depression
- With Rx his verbal IQ 86 → 99, tho' deficits
- Stressed importance of treating pts with potential reversible depression even if cognitive impairment
- Used term pseudo-pseudodementia

Shraberg D, Am J Psychiatry 1978:135:601-2

Pseudo-pseudodementia

- Cognitive deficits do not completely recover
- Persistent executive dysfunction, visuospatial and amnestic deficits
- Neurological Sg → > progression to dementia
- Longer follow-up many of pseudodementia pts. → true dementia

Kral 1983; Kral & Emery 1989; Reding 1985;

Copeland 1992; Alexopoulos 1993

Depression + 'reversible dementia'

- Shraberg (1978) 'Pseudo-pseudodementia', single case whose deficits continued after Rx
- Alexopoulos (1993) followed up 23 in-pts with depression and criteria for dementia vs 34 with depression and no dementia
 - Age ≈74 ± 6.7; follow-up ≈33 months
 - HRSD on admission 36.6 vs 27.3 **
 - MMSE on admission 18.6 vs 27.3 ***
 - MMSE at discharge 26.4 vs 27.6 (p<0.09)
 - Dementia follow-up 43% vs 12% **; OR 4.69

Shraberg D *Am J Psychiatry* 1978:135:601-2 Alexopoulos GS et al *Am J Psychiatry* 1993; 150: 1693-9

Kiloh's pseudodementia patients

- Sachdev (1990) followed up 19/21 Kiloh's PD pts 2-14 yrs later; two did not meet PD criteria
- Pts 26-63 yo at baseline; 6 Sz, 13 Affective Δ
- All those alive followed for > 12 yrs.
- 1 pt's Dx changed to dementia; 1 pt possible dementia
- Conclusion: study validates clinical utility of pseudodementia

Pseudodementia: a term for its time

Snowdon J. Australasian Psychiatry, 2011; 19: 391-7

- 50th Anniversary of Kiloh's paper
- Written when dementia defined as irreversible. Research since...
- cognitive deficits in depression often not fully reversed
- ...depression can herald underlying progressive dementing disorder
- Pseudodementia still useful in fostering discussion of potentially treatable psychiatric symptoms, even in progressive dementia

Lit. review – longitudinal outcome¹

- 40,277 articles identified
- 22941 individual articles (duplicates removed)
- 50 eligible articles
- Total number of patients = 237
 - 194 depressive pseudodementia
 - 18 conversion disorder
 - 12 psychosis
 - 10 bipolar disorder
 - 2 personality disorders
 - 1 post-traumatic neurosis

Connors M et al, in preparation

Lit. review – longitudinal outcome¹

- Total number of patients = 237
 - 77 (33%) progressed to dementia
 - 63 (27%) remained stable
 - 62 (26%) improved
 - 28 (12%) died
 - -7 (3%) lost to follow up

Connors M et al, in preparation

Follow-up studies of pts with depressive pseudodementia

Study	n	Age at baseline Mean (SD)	Follow-Up (yrs)	Proportion with frank dementia at follow up
Tsiouris et al. (1997) ⁵⁶	4	44.0 (4.2)	0.5-3	0 (0%)
Sachdev et al. (1990) ⁵²	8	57.8 (6.1)	7.9	0 (0%)
Reynolds III et al. (1987) ⁵⁷	8	71.8 (7.7)	0-2	0 (0%)
Pearlson et al. (1989) ⁵⁵	15	71.9 (1.5)	2.0	1 (7%)
Rapinesi et al. (2013) ³¹	20	72.7 (5.3)	0-2	0 (0%)
Alexopoulous et al. (1993) ⁵⁰	23	73.7 (6.8)	2.7	10 (44%)
Bulbena & Berrios (1986)	10	75.4 (6.9)	1.3-3.9	3 (30%)
McNeil (1999) ⁶	13	76.2 (7.1)	3.0	0 (0%)
Kral & Emery (1989) ⁵¹	44	76.5 (N/R)	4.0-18.0	39 (89%)
Sáez-Fonseca et al. (2007) ⁵³	21	77.6 (N/R)	5.0-7.0	15 (71%)
Rabins et al. (1984) ⁵⁴	18	N/R	2.0	2 (11%)
Copeland et al. (1992) ¹²	4	N/R	3.0	2 (50%)
Wells (1979) ¹⁵	6	N/R	<1.0	0 (0%)

Follow-up studies of pts with depressive pseudodementia

Study	n	Age at baseline Mean (SD)	Follow-Up (yrs)	Proportion with frank dementia at follow up
Tsiouris et al. (1997) ⁵⁶	4	14.0 (4.2)	0.5-3	0 (0%)
Sachdev et al. (1990) ⁵²	8	57.8 (6.1)	7.9	0 (0%)
Reynolds III et al. (1987) ⁵⁷	8	71.8 (7.7)	0.2	0 (0%)
Pearlson et al. (1989) ⁵⁵	15	71.9 (1.5)	2.0	1 (7%)
Rapinesi et al. (2013) ³¹	20	72.7 (5.3)	0.2	0 (0%)
Alexopoulous et al. (1993) ⁵⁰	23	73.7 (6.8)	2.7	10 (44%)
Bulbena & Berrios (1986)	10	75.4 (6.9)	1.3-3.9	3 (30%)
McNeil (1999) ⁶	13	76.2 (7.1)	3.0	0 (0%)
Kral & Emery (1989) ⁵¹	44	76.5 (N/R)	4.0-18.0	39 (89%)
Sáez-Fonseca et al. (2007) ⁵³	21	77.6 (N/R)	5.0-7.0	15 (71%)
Rabins et al. (1984) ⁵⁴	18	N/R	2.0	2 (11%)
Copeland et al. (1992) ¹²	4	N/R	3.0	2 (50%)
Wells (1979) ¹⁵	6	N/R	<1.0	0 (0%)

Longitudinal outcomes: depression

Study	n	Age	Sex female	Follow- Up (yrs)			Outcom e		
					Dementia	Stable	Improve	Dead	Attrition
Tsiouris et al. (1997)	4	44.0 (4.2)	3 (75%)	0.5-3.0	0 (0%)	0 (0%)	4 (100%)	0 (0%)	0 (0%)
Sachdev et al. (1990)	8	57.8 (6.1)	7 (88%)	7.9	0 (0%)	2 (25%)	0 (0%)	6 (75%)	0 (0%)
Reynolds III et al. (1987)	8	71.8 (7.7)	7 (88%)	0.1	0 (0%)	0 (0%)	8 (100%)	0 (0%)	0 (0%)
Pearlson et al. (1989)	15	71.9 (1.5)	4 (27%)	2.0	1 (7%)	10 (67%)	0 (0%)	0 (0%)	4 (27%)
Rapinesi et al. (2013)	20	72.7 (5.3)	13 (65%)	0.2	0 (0%)	0 (0%)	20 (100%)	0 (0%)	0 (0%)
Alexopoulous et al. (1993)	23	73.7 (6.8)	N/R	2.7	10 (43%)	5 (22%)		8 (35%)	0 (0%)

Longitudinal outcomes: depression

Study	n	Age	Sex female	Follow- Up (yrs)	Dementi a	Stable	Outcom e	Dead	Attrition
Bulbena & Berrios (1986)	10	75.4 (7.9)	7 (70%)	1.3-3.9	3 (30%)	5 (50%)	0 (0%)	2 (20%)	0 (0%)
McNeil (1999)	13	76.2 (7.1)	9 (69%)	3.0	0 (0%)	0 (0%)	7 (54%)	5 (38%)	1 (8%)
Kral & Emery (1989)	44	76.5 (N/R)	N/R	4.0-18.0	39 (89%)	5 (11%)	0 (0%)	0 (0%)	0 (0%)
Sáez-Fonseca et al. (2007)	21	77.6 (N/R)	17 (81%)	5.0-7.0	15 (71%)	6 (29%)		0 (0%)	0 (0%)
Copeland et al. (1992)	4	N/R	N/R	3.0	2 (50%)	2 (50%)		0 (0%)	0 (0%)
Rabins et al. (1984)	18	N/R	N/R	2.0	2 (11%)	0 (0%)	15 (83%)	1 (6%)	0 (0%)

Longitudinal outcomes: depression

Study	n		Stable		Dead	Attrit ⁿ
		entia		ved		
Overall	188	72 (38%)	35 (19%)	54 (29%)	22 (12%)	5 (3%)

Follow-up studies of pts with depressive pseudodementia x age

- 55 pts <73yo: only one (1.8%) → dementia
- 111 pts >73: 67 (60.4%) → dementia
- 28 pts age not reported 4/28 (14.3%) → dementia

Pseudo-vs pseudo-pseudodementia

- Older age
- Poorer memory performance on delayed word list recall
- Imaging cortical atrophy, ↑ VBR, ↓prefrontal cerebral blood flow, DWMH, CVD

Visser 2000

Longitudinal outcomes: conversion disorder

Study	n	Age	Sex female	Follow -Up (yrs)	Dem entia	Stable	Improve	Dead
Hepple (2004)	10	66.6 (N/R)	7 (70%)	13.4	0 (0%)	10 (100%)		0 (0%)
Liberini et al. (1993)	6	N/R	3 (50%)	2.0	1 (17%)	5 (83%)	0 (0%)	0 (0%)
Overall	16				1 (6%)	15 (94%)	0 (0%)	0 (0%)

94% pts stable < 13 yrs follow-up

Longitudinal outcomes: psychosis

Study	n	Dementia	Stable	Improve	Dead
Overall	11	2 (18%)	5 (46%)	0 (0%)	4 (36%)

Follow-up of pts with nondepressive pseudo-dementia

Study	Diagnoses		Age Mean (SD)	Follow- Up (yrs)	Proportion with dementia at follow up
Sachdev et al. (1990) ⁵²	Psychosis, bipolar	11	52·5 (10·6)	11·8 (2·1)	1 (9%)
Hepple (2004) ⁷⁴	Conversion disorder	10	66-6 (N/R)	13-4	0 (0%)
Bulbena & Berrios (1986) ⁶	Psychosis, bipolar, personality disorder*	12	71.6 (12·2)	1-25-3-9	3 (25%)
Liberini et al. (1993) ⁷⁵	Conversion disorder	6	N/R	2-0	1 (17%)
Wells (1979) ¹⁵	Conversion disorder, psychosis, post-traumatic neurosis	4	N/R	<1.0	0 (0%)

Longitudinal outcomes: psychosis

Study	n	Age	Sex female	Follow- Up (yrs)	De- mentia	Stable	Improve	Dead
Sachdev et al. (1990)	6	52.3 (13.7)	4 (67%)	11.8	1 (17%)*	5 (83%)	0 (0%)	0 (0%)
Bulbena & Berrios (1986)	5	82.2 (7.4)	4 (80%)	1-3-3-9	1 (20%)	0 (0%)	0 (0%)	4 (80%)
Overall	11				2 (18%)	5 (46%)	0 (0%)	4 (36%)

Longitudinal outcomes: Bipolar AD

Ctudy	10	A 010	Cov	Fallow	Domontio	Ctoble	Locatorio	Dood
Study	n	Age	Sex	Follow-	Dementia	Stable	Impro	Dead
			(female)	Up (yrs)			ve	
Sachdev	5	52.6	4 (80%)	11.8	0 (0%)	4	0 (0%)	1 (20%)
et al. (1990)		(7.0)	,		,	(80%)	, ,	,
ot an (1000)		(110)				(3070)		
Bulbena &	5	63.0	4 (80%)	1.3-3.9	2 (40%)	3	0 (0%)	0 (0%)
	3		4 (00 /0)	1 3-3 3	2 (40 /0)		0 (0 /0)	0 (0 /0)
Berrios		(9.3)				(60%)		
(1986)								
	4.0					_		_
Overall	10				2	7	0	1
					(20%)	(70%)	(0%)	(10%)

Methodological weaknesses

- Small sample sizes
- Lack of blinding in follow-up assessment
- Lack of exclusion of underlying dementia
 - No brain scans
 - Few did neuropsychological assessments
- Lack of basic demographic data (age, sex)
- Fail to specify criteria for pseudodementia

Conclusions 1

- Pseudodementia ≠ diagnosis but is a clinical Px
- Age and past psychiatric history important
- Misdiagnosing a person with pseudodementia as true dementia when underlying condition is treatable is the tragedy that Kiloh highlighted
- Late onset depression and other psychiatric conditions may be harbinger of organic brain Δ
- Dementia & psychiatric disorders may co-exist

Pseudodementia: a term for its time

-
- ...depression can herald underlying progressive dementing disorder
- Pseudodementia still useful in fostering discussion of potentially treatable psychiatric symptoms, even in progressive dementia

Snowdon J. Australasian Psychiatry, 2011; 19: 391-7

Pseudodepression and apathy?

(Psychiatry ward 1946)

What is apathy?

 A form of executive cognitive dysfunction¹

- Overlaps with other psychological & behavioural aspects such as mood, personality & cognitive functioning²
- An internal state of lack of interest or a state of behavioural inaction³
- Synonyms passivity, abulia, amotivation

¹Landes et al *JAGS* 2001; 49:1700-07; ²Pluck & Brown *JNNP* 2002;73:636-642; ³Burns et al *J Nerv Ment Dis* 1990;178:20-26

What is apathy?

The apathy spectrum includes reduced:

- initiative
- interest
- motivation
- spontaneity

- affection
- energy
- enthusiasm
- emotion
- persistence

Levy et al *J Neuropsychiatry Clin Neurosci* 1998;10:314-9 Overshott et al *Expert Review of Neurotherapeutics* 2004;4:809-821

Apathy components

- Behavioural: ↓ motivation, initiative
- Cognitive: ↓ drive, ↓ interest
- Affect: ↓ emotional responsiveness

I wouldn't say I'm apathetic. I just don't give a hoot

Frequency of apathy

- Apathy associated with neurological, psychiatric, medical, drug-induced & socioenvironmental conditions¹
- Frequency in neurological disease ≤ 92%²
- Dementia & schizophrenia commonest ²

Frequency of apathy

- Highest prevalences of apathy in
 - -Progressive supranuclear palsy¹
 - -Fronto-temporal dementia²
 - -Severe AD³
- Apathy following stroke ~ 25 %⁴

¹Litvan et al *J Neurol Neurosur Psychiatry* 1998;65:717-721

²Hodges *Neurology* 2001; 56:S6-S10

³Mega et al *Neurology* 1996;46:130-135

⁴Brodaty et al Psychol Med 2005;35:1707-1716

Apathy & cognition

Apathy is the most common behavioural or psychological symptom in dementia

BPSD prevalence (%) Robert's et al, 2005

Frequency of apathy in dementia

- One of the most challenging, prevalent & persistent behavioural symptoms of dementia
- Occurs in up to 70% of those with AD¹
- A major clinical feature of dementia with subcortical & frontal pathology
 - Dementia with Lewy bodies²
 - Huntington's disease³
 - Vascular dementia⁴
 - Binswanger's disease⁵

⁵Caplan *Neurology* 1995;45:626-633

¹Starkstein et al European Journal of Psychiatry 2006;20:96-106

²Galvin et al Alzheimer Dis Assoc Disord 2010;24:177-181

³Baudic et al Dementia & Geriatric Cognitive Disorders 2006; 21:316-321

⁴Staekenborg et al J Neurol Neurosurg Psychiatry 2010;81:547-551

Apathy in MCI

- In 11.1-39.8% of cases¹
- Intermediate between older normal controls & AD²
- Predicts a higher rate of conversion to AD³

¹Lyketsos et al *JAMA* 2002;288:1475-83

²Crocco & Lowenstein Current Psychiatry Reports 2005;7:32-36

³Robert et al *Clin Neurol Neurosurg* 2006;108:733-736

Apathy & dementia

Apathy increases with severity and duration of dementia

Wu HZY, et al. Int Psychogeriatr. 2009 Jun; 21(3):476-484.

Diagnosis

- Lack of standardised diagnostic criteria
- Difficult for family caregivers to identify
 & quantify → under-reporting²
- Differentiate lack of motivation rather than cognitive impairment³

¹Starkstein et al *European JPsychiatry* 2006;20:96-106

²Landes et al *J Am Geriatr Soc* 2001; 49:1700-07

³Marin *Am J Psychiatry* 1990; 147:22-30

How do we diagnosis apathy?

- History
- Clinical impression
- Apathy rating tools
 - Apathy Evaluation Scale¹
 - Apathy Index²
 - Apathy Inventory³
 - Apathy Scale⁴

- Apathy items in behavioural scales
 - -NPI
 - Behaviour and Mood disturbance Scale
 - Clifton Assessment Procedures for the Elderly⁷

¹Marin RS et al *Psychiatry Res* 1991;38:143-162

⁵Cummings et al *Neurology* 1994;44:2308-14 ⁶Neville & Byrne Collegian: J Royal College of Nursing, Aust 2001;20:166-172 ⁷Pattie *Br J Clin Psychol* 1981;20:173-178

²Mayo et al *Stroke* 2009;40:3299-3307 ³Robert et al *IJGP* 2002;17:1099-1105

⁴Starkstein et al *Euro J Psych* 2006;20:96-106

Depression & apathy & cognition

 Related to but distinct from depression & dysphoria¹

Symptoms overlap

¹Marin et al *J Nerv Ment Dis* 1994;182:235-39

Depression → apathy?

- Apathy common in depression
- 3 items in GDS:
 - Have you dropped many of your activities or interests?
 - Do you prefer to stay at home, rather than go out and do things?
 - Do you feel full of energy?

Depression → apathy?

- 2 items in Hamilton
 - Loss of interest, lack of activity in work or hobbies
 - Decreased energy
- When depression lifts apathy improves
 BUT ...
- apathy can occur independently of depression
- Depression can occur without apathy

Depression & apathy & cognition

Apathy > associated with right frontal subcortical circuits

Depression with left

After stroke as > CVD

- overlap between apathy & depression increases
- overlap between apathy & cognition increases

Withall A, Brodaty H... Sachdev P Int Psychoger, 2011;23:264-273,

Distinct from depression

- Related to but distinct from depression & dysphoria¹
- Symptoms overlap
- Association between apathy & cognitive impairment (esp. executive function) stronger in apathy than depression²

¹Marin et al *J Nerv Ment Dis* 1994;182:235-239

²Brown & Pluck *Trends Neurosci* 2000;23:412-417

Apathy vs depression

Apathy

- Lack emotion
- Don't care
- Not suicidal
- Not usually anxious
- Vegetative Sx absent usually except lose interest in food/ sex
- No sadness 'transmits'
- AD Rx: Poor response

Depression

- Sad, tearful
- No point to life
- May be suicidal/ "rather be dead"
- May be anxious
- Vegetative symptoms
 - Sleep, appetite, weight, libido
- Clinician 'feels' sadness
- Rx: Moderate response

Symptoms in common

- Lack interest
- Lack initiative
- Lack motivation
- Decreased libido
- Decreased concentration
- Less energy

Secondary apathy

- Quiet delirium
- Medical ∆ infection
- Medication side effects can initiate, maintain
 - or imitate apathy^{1,2}
 - antipsychotics
 - antidepressants
 - neuroleptics

¹Colling *J Gerontol Nurs* 1999;25:27-32 ² Barnhart et al *Journal of Psychiatric Practice* 2004;10:196-199

APOE ε4 & apathy

- In pts with probable AD, apathy has been associated with APOE ε4 independent of age, sex, cognitive ability and disease duration (1,2)
- Other cross-sectional studies no association 3-6

- 1. Monastero R. Acta Psychiatr Scand. 2006;113:59–63.
- 2. D'Onofrio G. IJGP 2011;26:1062–70.
- 3. Del Prete M. Neurol Sci. 2009;30:367–73.
- 4. Borroni B. Neurobiol Aging. 2006;27:1595–603.
- 5. van der Flier WM. Dement Geriatr Cogn Disord. 2007;23(1):42–6.
- 6. Levy ML. Biol Psychiatry. 1999;45(4):422-5.

Pseudodepression

- Apathy misdiagnosed as depression
- Wife: My husband is depressed, doctor
- Dr: "How do you know he is depressed?"
- Wife: "He just sits all day and does nothing"
- Dr: "Is he sad, does he cry, does he say life has no meaning?"
- Wife: "No he does not say anything unless I ask him. He just sits!"

Pseudodepression

- Apathy often misdiagnosed as depression
- Apathy is common in depression
- Apathy is unresponsive to antidepressants¹
- Apathy may respond to ChE inhibitors¹
- Apathy and depression may be comorbid

Frontal –subcortical pathology

Pseudo-depression case

- 67 yo man hit by a car → closed head injury
- "Dep^d" → Multiple antidepressants, group and individual therapy, ECT – no better
- Five years later, referred w Treatment Resistant Depression
- His P/Sx: I've lost the need to talk
- CT brain scan normal, MMSE 29/30
- MRI frontal pathology
- Neuropsych frontal executive dysfunction

Depression, apathy & cognition

Conclusions

- Overlapping syndromes
- Overlapping symptoms
- Common pathologies
- Underlying brain chemistry, pathology differ
- Treatments/ management strategies differ
- Careful diagnosis is important

Thank you

www.cheba.unsw.edu.au

www.dementiaresearch.org.au

h.brodaty@unsw.edu.au

Thanks to Michael Connors for lit review

