Beneficial interaction between B vitamins and omega-3 fatty acids in slowing brain atrophy and cognitive decline in Mild Cognitive Impairment

A. David Smith and Helga Refsum, Oxford Project to Investigate Memory and Ageing (OPTIMA)
Department of Pharmacology, University of Oxford

Risk factors for Alzheimer’s disease

- Low fish intake,
- or low blood levels of long chain omega-3 fatty acids, are risk factors for AD

Cognition in the elderly: intake of fish
2,027 Norwegian elderly

Eating fish protects against Alzheimer’s Disease

Eating fish once or more each week reduces risk of AD by 33%
- compared with those who eat fish less than once a week.

Fish is a rich source of several micronutrients:
- Omega-3 fatty acids (DHA, EPA)
- Vitamin B12
- Selenium

Plasma DHA and later risk of dementia
Framingham Heart Study (N = 899, age 76, no dementia)

Omega-3 fatty acids and Alzheimer’s disease

Meta-analysis by Beydoun et al. BMC Public Health 2014, 14: 643

Omega-3 fatty acids (high vs. low) and risk of incident AD
Population attributable risk of AD for low omega-3 is 22%

20,344 subjects
Pooled relative risk of AD
0.67 (0.47,0.95)

© A. David Smith December 2016
david.smith@pharm.ox.ac.uk
Risk factors for Alzheimer’s disease

- Low fish intake, or low blood levels of long chain omega-3 fatty acids, are risk factors for AD
- Low folate and B12 status and raised plasma total homocysteine (tHcy) are risk factors for cognitive decline and for AD

The methionine cycle

![The methionine cycle diagram]

3 B vitamins regulate the level of homocysteine

Effect of changes in homocysteine (tHcy) or folate over time on episodic memory test scores

![Effect of changes in homocysteine (tHcy) or folate over time on episodic memory test scores graph]

Homocysteine and dementia in the Framingham study

![Homocysteine and dementia in the Framingham study graph]

Risk factors for Alzheimer’s disease

- Low fish intake, or low blood levels of long chain omega-3 fatty acids, are risk factors for AD
- Low folate and B12 status and raised plasma total homocysteine (tHcy) are risk factors for cognitive decline and for AD
- Each of these risk factors has a population attributable risk of about 20%
- What is the effect of modifying these risk factors on cognitive decline?
Clinical trials

- Lowering homocysteine by B vitamins can slow cognitive decline: FACIT trial, VITACOG trial
- Eating fish or supplementing diet with omega-3 fatty acids can slow cognitive decline
- BUT, for both risk factors, trial results have not been consistent, many negative. Why?

The shrinking brain

- As we age (over ~60) the brain shrinks at a rate of ~0.5% per year, i.e. ~7 mL per year
- Those of us with memory problems - 'mild cognitive impairment' or 'MCI' - show a faster rate of shrinkage of ~1.0% per year
- In patients with Alzheimer's disease, the rate is higher still, at ~3% per year

Many risk factors for AD are associated with an increased rate of brain atrophy: smoking, diabetes, low omega-3, physical inactivity, low Med diet, high blood pressure, atrial fibrillation, high homocysteine, low B vitamins.

Serum B12 is related to rate of brain atrophy

107 community-dwelling elderly, not impaired at baseline

% change in total brain volume per year, over 5 years

Baseline vitamin B12 (pmol/L) vs. % change in total brain volume over 5 years

Serum B12 is related to rate of brain atrophy

Baseline vitamin B12 (pmol/L)

Vogiatzoglou 2008

The VITACOG trial

P.I.s AD Smith, H Refsum and R Jacoby

Do B vitamins slow the rate of brain atrophy in those with MCI?

- 270 community-dwelling subjects >70 years old with mild cognitive impairment (MCI), in Oxford
- Randomised to placebo or 'TrioBe Plus' (Recip/Meda) (0.8 mg folic acid; 0.5 mg B12; 20 mg B6)
- Treated for 2 years
- Volumetric MRI scans at start and end
- Powered to detect a 20% slowing of brain atrophy
- Secondary outcomes: cognitive and clinical changes
- Pre-specified analysis according to nutrients and tHcy
B vitamin treatment slows the mean rate of brain atrophy (ITT)

Mean rate of atrophy (% per y)

Placebo (n = 83)

B vitamins (n = 85)

30% slower rate

$P = 0.001$

VITACOG

- The main effect is a highly significant slowing of the rate of atrophy by B vitamin treatment
- Pre-specified subgroup analysis: do baseline homocysteine levels interact with effect of B vitamin treatment?

Slowing of atrophy depends on baseline homocysteine

Rate of atrophy per year (%)

Quartiles of baseline homocysteine

≤ 9.5

>11.3

>13 μmol/L

$P = 0.001$ (ANOVA)

$P_{interaction} = 0.02$

53% slower atrophy rate

VITACOG matrix

Brain shrinkage

Slowed by 53%

B vitamin treatment

Plasma homocysteine

Lowered by 32%

Effect of B vitamin treatment on semantic memory (GLMM model)

Low tHcy (< 11.3)

High tHcy (> 11.3)

Category Fluency Score

Time since randomisation (y)

At low tHcy, no cognitive decline; no effect of B vits
At high tHcy, B vits prevent cognitive decline

Beneficial effects of B vitamin treatment on cognition

Generalized linear model

Only significant in those with raised tHcy

P value

- Episodic memory (HVLT delayed recall) 0.001
- Semantic memory (category fluency) 0.037
- Global cognition (MMSE) 0.001
- Clinical dementia rating (CDR) 0.020
- IQCODE 0.011

Independent of baseline tHcy

- Executive function (CLOX) 0.015

© A. David Smith December 2016
david.smith@pharm.ox.ac.uk
Which brain regions were protected by B vitamins?

- Particular cognitive functions are known to be associated with different brain regions
- What is the effect of B vitamin treatment on the rate of atrophy of these brain regions?
- We used voxel-based morphometry (VBM) to answer this question

Outcomes of the VITACOG trial: effect of B vitamins

- Slowed whole brain atrophy in Mild Cognitive Impairment
- Slowed atrophy in those brain regions affected in Alzheimer’s, by as much as 9-fold
- Slowed cognitive decline in several domains and improved clinical status
- Overall, B vitamins had a disease-modifying effect

These responses only occurred in subjects with baseline tHcy levels above ~ 11 µmol/L and, as I will now show, in those with a good omega-3 fatty acid status

Omega-3 fatty acids and brain atrophy

Low levels of red blood cell omega-3 fatty acids were associated with
- smaller whole brain volume,
- greater white matter hyperintensity
- poorer cognition in non-demented Framingham cohort (n=1575)

Omega-3 fatty acids and brain atrophy

We asked two questions:
- Does baseline omega-3 status influence the rate of atrophy in the placebo group?
- Does baseline omega-3 status influence the atrophy and cognitive responses to B vitamins?
VITACOG: effect of omega-3 levels on brain atrophy in placebo group at different tHcy levels

Baseline omega-3 fatty acid concentration
High omega-3 status only protects the brain in those with low tHcy

We asked two questions:
- Does baseline omega-3 status influence the rate of atrophy in the placebo group?
 - YES, in those with low tHcy
- Does baseline omega-3 status influence the atrophy and cognitive responses to B vitamins?

Omega-3 fatty acids and brain atrophy

Only those in the top tertile of omega-3 showed a beneficial cognitive response to B vitamins

Omega-3 and atrophy response to B vitamins

B vitamin treatment reduces brain atrophy rates by 40% in subjects with high omega-3 levels
No effect of B vitamins in those with poor omega-3 status

Omega-3 and cognitive response to B vitamins

Final episodic memory score (HVLT-DR)

Only those in the top tertile of omega-3 showed a beneficial cognitive response to B vitamins

Omega-3 and clinical response to B vitamins

At high DHA levels, B vitamins halved the proportion with scores > 0, i.e. they improved the clinical status

Proportion with CDR > 0

Plasma omega-3 fatty acids (tertiles)
How can we explain the interaction between B vitamins and omega-3 fatty acids on brain structure and function?

A landmark paper showing that increased plasma tHcy and S-adenosylhomocysteine (SAH) in AD is associated with a decrease in red cell phosphatidylcholine (PC) and in omega-3 (DHA) content of red cell PC

How can we explain the interaction between B vitamins and omega-3 fatty acids on brain structure and function?

- In AD, there is a deficit in the brain, red cell and plasma of the species of phosphatidylcholine (PC) that are rich in omega-3 fatty acids (Selley, 2007, Astarita 2010, Yuki 2014, Whiley 2014)
- This form of PC is crucial for normal brain structure and function, especially at the synapse
- This form of PC is generated by the sequential methylation of phosphatidylethanolamine, a process requiring B vitamins (DeLong 1999)

Conclusions from VITACOG

- Omega-3 fatty acids only appear to protect the brain in people with low tHcy, i.e. with good B vitamin status
- B vitamins only appear to protect the brain in people with good omega-3 fatty acid status
- These unexpected interactions could explain why some omega-3 trials have failed and why some B vitamin trials have failed

Formation of phosphatidylcholine (PC)

1. Kennedy pathway (about 70% in liver):

 CDP-choline + diacylglycerol → PC

 PC contains mainly saturated fatty acids

2. From phosphatidylethanolamine by sequential methylation (PEMT):

 PE → N-methylPE → N-dimethylPE → PC

 SAM SAH
 SAM SAH
 SAM SAH

 PC enriched in polyunsaturated fatty acids (omega-3)

Homocysteine and omega-3 fatty acids

Selley’s proposal

“The use of a combination of omega-3 polyunsaturated fatty acids, folic acid and vitamin B12 may be a more effective means of increasing the uptake of DHA into the brain than polyunsaturated fatty acids alone”

Selley, 2007
Summary and future directions

- The VITACOG trial has shown that lowering homocysteine by giving supplements of B vitamins will slow brain atrophy and slow cognitive decline.
- The beneficial effect of B vitamins was limited to subjects who also had a good omega-3 fatty acid status at baseline.
- A trial is needed to see if a combination of B vitamins and omega-3 fatty acids will slow conversion from MCI to AD.
- MCI: ~6% of the elderly: ~250,000 in Australia.
- With a combination treatment of B vitamins and fish oil it may be possible to prevent dementia in several thousand elderly in Australia.

Nutrition is important!

Nutritional intervention is a valid approach to the prevention of dementia.

Combinations of different nutrients are likely to be needed, which might explain why dietary patterns are so important in prevention.

We would like to thank all our colleagues in Oxford for their expert participation in VITACOG, especially Robin Jacoby, Celeste de Jager, Fredrik Jernéren, Abderrahim Oulhaj, Steve Smith, Gwen Douaud and the nurses who ran the trial.